
UNIVERSITY OF BASEL DEPT OF MATH AND COMPUTER SCIENCE

CCN-lite is a lightweight implementation of the CCNx
protocol. It supports most of the essential CCNx func-
tionalities, and more:

- Tiny code base: The core CCNx logic keeps in less
 than 1000 LoC
- Identical code for three incarnations: Linux kernel,
 user space, OMNeT++ simulator
- Scheduler support: both at chunk and packet level
- Fragmentation: CCNx over Ethernet
- Management: via CCNx msgs
- builtin, small HTTP server for quick diagnostics
- ISC licence (BSD-style)
- Finally: interoperable with CCNx !

Ideal for:
- class room work
- experimental extensions
- non-caching relays
- code base for commercial products

Status:
- code is on GitHub
- release 0.1.0 in July 2013
- used by Cisco, Freie Uni Berlin (RIOT), U of Basel

Modules that can be selected at compile time:
#defines:
USE_CCNxDIGEST, USE_DEBUG, USE_DEBUG_MALLOC,
USE_FRAG, USE_ETHERNET, USE_HTTP_STATUS,
USE_MGMT, USE_SCHEDULER, USE_UNIXSOCKET

Support for NFN to be added soon!

Contact: <christian.tschudin@unibas.ch>
Joint work with: M. Sifalakis and C. Scherb

CCNx Community Meeting
Sep 2013, Palo Alto

www.ccn-lite.net

The λ-calculus is a formal system for name binding
and substitution – it is the root of all functional pro-
gramming languages (LISP, Haskel etc). From λ-cal-
culus's perspective, CCNx is a protocol to do name
resolution i.e., to do a variable lookup. In Named
Function Networking, we extend CCN to reduce
all three forms of λ-terms:
 E := a variable
 E := f(e) application (of function f)
 E := λx.e abstraction (x is the param)

NFN-Example 1: Request a transcoded video
- needs two names (video, and transcoder)!
 [ccnx:nfn | /name/of/data | /name/of/transcoder]

NFN-Example 2: Replace CCNx' implicit hash
- with CCNx, a client can filter on the content's digest
- write this as a program:
 define filter(dataName, hashVal) (
 (ifelse (eq (sha256 dataName) hashVal)
 dataName
 nil)
)
NFN resolver's task is to find suitable execution site

How to turn CCN into a λ-term resolver:
- NFN names are λ-expressions
- NFN first checks for cached computation results (using
 the „find-or-execute“ instruction FOX that searches for
 a result bound to the hash of the term to resolve).
- If no cached result is available, NFN reduces the term
 (using “Krivine's lazy abstract machine”) and proceeds
 with sub-terms etc until we have a variable lookup or
 a function execution.

www.named-function.net

